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Abstract Recycling processes generate many material flows that are of equal 

quality as primary resources gained from mining operations. Often they save 

resources like material and energy. This paper discusses the information needed to 

evaluate the potential of materials flows in recycling processes to preserve 

primary resources. Main issue to look at are the uncertainties connected to 

recycling processes and the dissipative losses during the life cycle of products. 

Neural networks might be a solution to cope with vague data and high data ranges 

in recycling processes. In this paper we are presenting an approach how neural 

networks can support our attempt to handle the uncertainties connected to material 

flows. 

1 Introduction 

After processing end-of-life products in a recycling plant material flows of various 

qualities are generated. To save primary resources it is essential to keep as much 

material flows in the recycling loop as possible. But the further use of recycled 

material flows into high valuable materials is only possible through maintaining 

specific requirements of these secondary resources. Unfortunately, the material 

properties are associated with high uncertainty in recycling streams. By 

thoroughly and broadly identifying material properties the potential for further use 

of secondary resources can be assessed. A combination of the methodologies of 

Life Cycle Assessment, Material Flow Assessment, and Material Characterisation 

are quite useful here to establish the suitability of certain secondary material flows 



for further applications. The evidence of high uncertainties related to the 

properties of secondary material streams is cumbersome for the development of 

reliable models aimed at the prediction of waste material flows and their 

applications or potential for recovery. Dissipative losses of metals into other 

material streams, especially other metal cycles, sometimes substantially changes 

the properties of the receiving material stream. Copper in steel is only one 

example for this kind of quality problem. To assess the implications of this issue 

on the recyclability and sustainability of certain material flows, there is further 

research needed. Currently we only vaguely know the dissipative losses of metals 

in recycling operations. Material flow analysis with a focus on dissipation helps to 

shed some more light on this issue. 

2 Material flows in recycling processes 

2.1 Heterogenity of material flows and uncertainties 

Materials treated in recycling processes have in common that they are no longer in 

use for their original purpose and have to be treated. Often they vary in their 

composition but after treatment we can identify material flows that are valuable 

resources for new and other applications. Nevertheless the known and unknown 

uncertainties become important parameters to consider within recycling processes. 

These uncertainties can have many sources. The uncertainty by itself has to be 

addressed at three places: the input side, the processing side and the output side. 

The variation of parameters is not always known and coincidental. For example 

there is data for which no value is available, data for which an inappropriate value 

is available, and data for which more than one value is available [1]. These are 

also called data defects and are discussed further in this paper. Due to the fact that 

residues always vary in their composition and material flow only data ranges can 

be used as input parameter. These values may fluctuate around a threshold with 

deviations of maximum and minimum uncertainties as depicted in figure 1. 

Normally we expect an exact data in our calculation or measurement. Figure 1 

shows an example of the mass content of a specific material flow. The measured 

data (R) may be below, above or near a defined threshold. Potential uncertainties 

can lower (R-U) or raise (R+U) the data. Therefore, the handling of such data 

becomes difficult.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Variations of uncertainties around a threshold 

Uncertainties play an evident role during the assessment of a recycling process or 

to support a decision based on environmental impacts of processes. Therefore, 

uncertainties in the process have to be identified and considered as a fact in 

recycling processes. Modelling recycling processes and the assessment of 

uncertainty are firmly connected; otherwise the model provides a lack of 

reliability due to parameter uncertainties. The known and unknown uncertainties 

of the process become important parameters to consider. Only data ranges can be 

used as input parameter due to the fact that waste flows always vary in their 

composition [2]. 

2.2 Methods to assess material flows 

2.2.1 Life Cycle Assessment (LCA) 

Life Cycle Assessment (LCA), which is used to assess the environmental impacts 

of products from cradle to grave, is increasingly being applied to the evaluation of 

waste management strategies. It should be noted, however, that there is a 

fundamental difference between the life cycle boundaries of products and wastes. 

The life cycle of a product starts with the extraction of raw materials (through 

activities such as mining, logging, etc.) and ends with the final disposal of a 
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product [3]. The life cycle of waste on the other hand can be divided into two 

ways: Life cycles of secondary resources are often identified as open loop 

processes (conversion of material from one product into a new application) 

compared to closed loop processes (conversion of material into the same 

application). 

Since 1992 the Society of Environmental Toxicology and Chemistry (SETAC) is 

organizing workshops focused exclusively on uncertainties in Life Cycle 

Assessments (LCA) [4]. Modelling recycling processes and the assessment of 

uncertainty are firmly connected; otherwise the model provides a lack of 

reliability due to parameter uncertainties. An interest on the credibility of process 

modelling due to the performed decisions based on the LCA is evident [5]. 

According to Finnveden [6] the interest in LCA grew rapidly during the 1990s, 

also when the first scientific publication emerged [7]. Since then a strong 

development and harmonization has occurred resulting in an international standard 

[8]. Since there are still open questions while performing LCAs there are several 

international initiatives to provide recommendations, including the Life Cycle 

Initiative of the United Nations Environment Program (UNEP) [9] and the Society 

of Environmental Toxicological and Chemistry, the European Platform for LCA 

of the European Commission [10], and the emerging International Reference Life 

Cycle Data System. 

The management of product life cycle includes the best knowledge of processes 

and their system boundaries. All recycling processes have in common that their 

input material has already had a complete life cycle; therefore it is more difficult 

to find exact input data for the LCA of the recycling process. Attention has to be 

paid to uncertainties in performing LCAs in recycling processes. These days life 

cycles of secondary resources are no longer within the system boundary from 

“cradle to grave”; instead we have to look at a life cycle from “cradle to cradle” 

[11]. Resource flows are important for LCAs since they try to consider all input 

and output flows. The following chapter gives an overview on the Material Flow 

Assessment. 

2.2.2 Material Flow Assessment (MFA) 

Material Flow Analysis (MFA) is a systematic assessment of the flows and stocks 

of materials within a system defined in space and time [12]. It connects the 

sources, the pathways, and the final sinks of a material. An MFA delivers a 

complete and consistent set of information about all stocks and flows of a 

particular material within a system. The MFA can be regarded as a method to 

establish the inventory for an LCA. 



Material Flow Assessment can be easily applied to recycling processes because it 

takes into account all material flows entering and leaving the recycling process 

(system boarder). Since the input in recycling processes is often a mixture of 

various material streams the exact composition is never known. There is often a 

lack of information due to unknown parameters in material composition or 

processing steps [13]. Due to the high potential of recycling processes contributing 

to a sustainable management of resources (e.g. energy savings and material 

efficiency) it is necessary to assess the material flows with the regard to their 

environmental impact [14], [15]. Material flows in recycling operations have in 

common that they often consist of material impurities since the effort to 

completely separate materials is often not feasible. Therefore, the exact 

composition of output flows is variable. As a matter of fact this becomes even 

more evident when we consider dissipative losses in recycling processes. 

2.3 Dissipative losses and material characterisation 

Dissipation of materials is significant obstacle to efficient recycling and it is our 

belief that its needs to be considered in material flow analyses for a full evaluation 

of the performance of the processes. The consideration of dissipation implies the 

necessity of detailed data on material composition, which usually goes beyond 

elementary analysis and takes into account the chemical composition of the 

materials involved and possibly their structural characteristics (grain size etc). 

These data requirements can be part of a detailed material characterisation 

scheme, which needs to be implemented when modelling, evaluating and 

controlling recycling operations. 

We use a rather broad definition of the term dissipative losses, including all losses 

to the environment and other material streams which are resulting in 

concentrations in the target medium below a level where recovery is physically or 

economically feasible. Dissipative losses can occur intentionally or 

unintentionally. Famous examples are the wear and tear from overhead railway 

traction lines made from copper, abrasion of brake pads, dissipative use of metals 

in pesticides and pigments, or losses of copper to the steel cycle in recycling 

operations.  

Here we want to focus on the dissipation of metals into other metal cycles and 

metallurgical byproducts (e.g. slags), as this poses several challenges for 

recycling: a) the dissipated metal is lost, b) the receiving metal cycle is 

contaminated and c) when the byproducts are exposed to weathering, toxic 

emissions might occur. The loss of metals due to dissipation into other material 



cycles is a serious issue for critical metals, i.e. metals which have a high economic 

importance and which suffer from higher than normal supply risks. Copper is such 

an example, as it can almost not be substituted, is already in high demand, and the 

demand will likely further rise due to an expected production increase in 

electronic products, power generators, renewable energy technologies, electric 

vehicles, electricity infrastructures and so on [16]. On the other hand, the 

recycling efficiency rate of copper (copper recovered in recycling/copper available 

for recycling in obsolete products) in 1999 was only around 67%, with 

approximately 33% losses [17]. At least 17% losses occur into other material 

streams, most of which can be labeled as dissipative. Around 6% of the copper 

available for recycling ends up highly dissipated in other metal loops, mainly steel 

and aluminum [18]. The copper losses into steel have a negative impact on the 

steel quality and should be avoided as much as possible. In future, this problem 

might become worse, with an increase in small size WEEE (losses to waste dumps 

and incinerator ashes), an increase in electronics in vehicles (loss to the steel 

cycle) and an increase of non-electrical industrial waste (losses to other metal 

loops, including steel) [18].  

When metal flow systems (e.g. reycling operations) are to be evaluated, 

dissipation thus needs to be taken into account. A focus on mass flows alone does 

not suffice to capture the characteristic of metal flows, since the quality of these 

flows is crucial to the further processing and use options for these metals. We 

need to adress two different questions regarding dissipative losses of metals: i) 

where do the metals, especially the critical metals, end up and ii) in what 

concentration. In order to do so, we need detailed information on the metal 

contents of material flows (inputs and outputs). For the case of recycling 

processes, we are looking for answers to the question whether the process 

dissipates a metal or whether it concentrates a metal. Recycling operations usually 

aim at concentration, but in many cases the concentration of one metal is 

accompanied by the dissipation of another. Steel recycling is such an example: 

while the copper fraction in obsolete steel products is usually highly concentrated 

(e.g. in small electrical motors embedded in the steel scrap), after recycling the 

copper is finely dissipated within the produced steel. While the concentration of 

iron increases during the operation, the concentration of copper decreases. This is 

also true for other metals in the steel scrap, only that their dissipation is not as 

harmful to the steel cycle (with the exception of tin). In general, the effectiveness 

of recycling operations should be based on an analysis of all metals, at least the 

critical ones, present in the scrap. When the concentration and dissipation of all 

these metals is evaluated, a complete picture of the quality of the recycling process 

emerges. A good measure for overall dissipation or concentration of metals in the 

process is the specific statistical entropy of the metals in the mixtures (entropy of 



mixing). These can be calculated for all relevant metals and compared between 

input flows and output flows (for the methodology see [19]). First test calculations 

for specific recycling operations have been performed [20], [21]. The results 

indicate, that although the processes analysed generally concentrate the metals 

present in the inputs, some metals are rather dissipated. For a recycling process of 

zinc rich electric arc furnace dust, for example, 9 out of 13 metals are concentrated 

to varying degrees, with high concentration factors for iron, calcium, magnesium 

and zinc. The overall concentration is apparent in the fact that the total entropy of 

mixing is decreased by 33% [20]. Still, 4 metals are dissipated: manganese, 

molybdenum, nickel and titan. Since at least molybdenum and manganese are 

viewed as critical metals [22], [16] there seems to be an incentive to increase the 

effectiveness of this particular process. Without having analysed more processes 

in detail, a comparison of the absolute effectiveness of the process seems difficult, 

but 33% decrease in mixing does seem to leave some room for improvement.  

The analysis presented above can in principle be applied to all kinds of metal 

recycling operation. With a few alterations, it might also be applicable to other 

material flows (paper, rubber, minerals), if there is a need to address dissipation. 

For metal recycling operations the analysis of the "mixedness" of input, output 

and intermediary flows generates valuable insights into the effectiveness of the 

operations and helps identify hot spots for optimisation. The increase in overall 

metal concentrations can also serve as the base line for efficiency comparisons. 

The efficiency would then be the ratio of concentration achieved versus efforts 

spent, where "efforts" could be evaluated by energy demand, environmental 

burdens or thermodynamically assessed resource consumption [23], [24]. 

3 Assessing the recyclability and sustainability of recycled 

material flows 

Due to diverse origins of recycling materials information on recycling processes is 

not fully available for all process steps and materials. For examples metal analyses 

of material flows over a defined time frame will be in a specific data range and 

therefore only mean values are suitable for calculation and modeling. In this case 

we are applying a metamodel technique. A metamodel describes the structure of a 

model and uses mainly the information generated from processing steps for 

example. This results in an abstract combination of the elements of the model and 

its linkages. Therefore, this technique allows developing the model. In our 

approach the tools to build this model are common LCA software to define the 

mathematical connections between processing steps and their flows. 



A metamodel describes a theoretical performance of the model on a high level of 

abstraction to support the construction of a prediction model for real processes. 

Complex processes are divided into smaller modules with main effects on the 

process (modular construction system). Since the functional correlation between 

modules is often unknown “black-box” models are in use. These “black-box” 

models have direct or indirect influence on the process step through their input 

parameters and are therefore important for all following process steps. 

A knowledge-based decision support system (see Figure 2) uses mainly the 

information generated by processing steps resulting in an abstract combination of 

the elements of the model and its linkages. Hence, this technique allows 

developing a model. Instead of specific data it processes the information of a 

process (e.g. dismantling of waste products into components of different shapes 

and compositions). Collecting information on the “flow in” can be made 

accessible through existing databases like ecoinvent (ecoinvent Centre, 

Switzerland), international databases for LCA (ELCD/ILCD), recycling stock 

exchanges or own data pools. Calculating input data are performed with program 

interfaces on statistical basis. Finally, information on output data (flow out) can be 

generated through a developed knowledge-based decision support system. The 

accuracy of the model relies on the data availability and its quality. Therefore, it is 

necessary to have a well operated network.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Metamodel architecture based on knowledged-based decision support 

system 

4 Network adjusting by using petri nets and neural networks 

To meet the challenge to cope with uncertainties in this case we suggest a hybrid 

system which combines Petri nets and neural networks with a case based 
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neural network deficiencies concerning their original design and definition of their 

initial weighs. Our solution solves uncertainty problems of process data defects 

using neural networks and case based systems together. Recovered similar cases 

have allowed the readjusting the network solutions, as well as the correction data. 

Another advantage would be to propose several solutions to experts. 

Neural networks are used in different fields. Classification is one of problems 

where they are commonly and very often used. The Back-propagation algorithm is 

one of the most widely-used for training feed-forward neural networks because of 

its simplicity and capability to extract useful information from the examples and 

implicitly store it in their weighing connections [25], [26]. This algorithm has 

some limitations in its practical use that are generally approached and accepted by 

researchers. Some of these limitations are that its convergence toward a state of 

minimum error can be extremely slow, mainly if the size of the network is not big 

enough regarding the size of the problem. Next, it can standby in local minima 

before finishing the learning of all the examples, and finally, it is almost 

impossible to select the design of the network before hand [26]. Due to its 

complexity and slow process, a lot of software is developed to help the designers 

of these networks in the design and implementation of Multilayer Perceptrons 

(MLP). New training algorithms are implemented to achieve results similar to the 

traditional ones, in a very short time. Petri Nets are alternative tools for the study 

of non-deterministic, concurrent, parallel, asynchronous, distributed or stochastic 

systems. They can model systems in an easy and natural way. Furthermore, the 

Petri Nets approach can be easily combined with other techniques and theories 

such as object-oriented programming, fuzzy theory, neural networks, etc. These 

modified Petri Nets are widely used in computing, manufacturing, robotic, 

knowledge based systems, process control, as well as in other kinds of engineering 

applications [27]. Since Petri Nets offer advantages to model systems and can 

interact with other techniques easily, it would be advantageous to model neural 

networks starting from Petri Net models, which allow not only the design 

adjustment but also the initialization of the neural network weights. Following the 

algorithm proposed by Xiaoou Li and Wen Yu in [27], we can model a neural 

network starting from a Petri net with the application of weighty production rules 

in the algorithm. The learning algorithm of the neural networks obtained is the 

same as the backpropagation of multilayer neural networks. The main idea is that 

all layer weights can be updated through the backpropagation algorithm if 

certainty factors of all sink places are given [26]. A complex neuronal network can 

be divided into several sub-networks starting from the modular design of an 

original Petri Net. The designed sub-networks will correspond to the real 

application of sub-processes. 



5 Discussion and Outlook 

The preservation of material flows in recycling processes for further usage is 

strongly connected to the material characterisation. With the definition of material 

properties and material qualities the further usage of material flows can be 

enhanced. Materials can be preserved through directing material flows into most 

suitable recycling processes. According to high uncertainties in recycling 

processes and recycled materials a solution for a proper information system has to 

be implemented. Our attempt for the varying data is a hybrid system which 

combines Petri nets and neural networks with a case based reasoning approach. 

More research has to be done to present a reliable model. 
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